Loss of p120-catenin induces metastatic progression of breast cancer by inducing anoikis resistance and augmenting growth factor receptor signaling.
نویسندگان
چکیده
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell-cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120-catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in formation of stromal-dense tumors that resemble human metaplastic breast cancer and metastasize to lungs and lymph nodes. Loss of p120 in anchorage-dependent breast cancer cell lines strongly promoted anoikis resistance through hypersensitization of growth factor receptor (GFR) signaling. Interestingly, p120 deletion also induced secretion of inflammatory cytokines, a feature that likely underlies the formation of the prometastatic microenvironment in p120-negative mammary carcinomas. Our results establish a preclinical platform to develop tailored intervention regimens that target GFR signals to treat p120-negative metastatic breast cancers.
منابع مشابه
Factor Receptor Signaling Cancer by Inducing Anoikis Resistance and Augmenting Growth Loss of p120-Catenin Induces Metastatic Progression of Breast
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell–cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in ...
متن کاملTumor and Stem Cell Biology Loss of p120-Catenin Induces Metastatic Progression of Breast Cancer by Inducing Anoikis Resistance and Augmenting Growth Factor Receptor Signaling
Metastatic breast cancer remains the chief cause of cancer-related death among women in the Western world. Although loss of cell–cell adhesion is key to breast cancer progression, little is known about the underlying mechanisms that drive tumor invasion and metastasis. Here, we show that somatic loss of p120catenin (p120) in a conditional mouse model of noninvasive mammary carcinoma results in ...
متن کاملNuclear p120-catenin regulates the anoikis resistance of mouse lobular breast cancer cells through Kaiso-dependent Wnt11 expression
E-cadherin inactivation underpins the progression of invasive lobular breast carcinoma (ILC). In ILC, p120-catenin (p120) translocates to the cytosol where it controls anchorage independence through the Rho-Rock signaling pathway, a key mechanism driving tumor growth and metastasis. We now demonstrate that anchorage-independent ILC cells show an increase in nuclear p120, which results in relief...
متن کاملE-cadherin loss and subsequent control of Rho-driven anoikis resistance through p120- and Kaiso-dependent expression of Wnt11. KEY WORDS: p120-catenin, Kaiso, Breast cancer metastasis, Anoikis resistance
373 ABSTRACT E-cadherin inactivation underpins the progression of invasive lobular breast carcinoma (ILC). In ILC, p120-catenin (p120) translocates to the cytosol where it controls anchorage independence through the Rho-Rock signaling pathway, a key mechanism driving tumor growth and metastasis. We now demonstrate that anchorage-independent ILC cells show an increase in nuclear p120, which resu...
متن کاملBone morphogenic protein receptor type 1a (BMPR1A) and Caveolin-1 associated with trastuzumab resistance of breast cancer cells
Trastuzumab is a specific monoclonal antibody used for therapeutic of the human epidermal growth factor receptor 2 (HER-2) -positive metastatic breast cancer. But, resistance to trastuzumab is a major obstacle in clinical efficiency. During the past years, several studies have been done to find the mechanisms contributing to trastuzumab resistance. Previous studies have highlighted that bone m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 73 15 شماره
صفحات -
تاریخ انتشار 2013